Materialen Fisika Zentroa (CSIC-UPV/EHU) eta Donostia International Physics Centerreko (DIPC) Deung-Jang Choi eta Cristina Mier ikerlariak buru dituen nazioarteko ikerketa-talde batek, Korea, Japonia eta Ameriketako Estatu Batuetako ikerketa-taldeekin lankidetzan, arrakastaz aurkeztu du plataforma kuantiko berri bat, atomo indibidualen espinak azalera solido baten gainean erabiltzen dituena, qubit (bit kuantiko) sistema anizkoitza lortuz, hiru elektroi-spin aldi berean erabiltzen dituena. Ikerketaren emaitzak Science aldizkari ospetsuan argitaratu berri dira.

Informazioa biltegiratzeko eta ordenagailuetan kalkulatzeko unitate nagusia bita da, 0 edo 1eko balioa izan dezakeena. Ordenagailu kuantikoek, aldiz, qubitekin funtzionatzen dute funtsezko unitate gisa, 0 eta 1 egoeren gainjartze batean kalkuluak egin ditzaketenak, eta horrek esan nahi du aldi berean egon daitezkeela bi egoera horietan, Schrodingerren katuaren paradoxan bezala. Gaitasun horrek errendimendua nabarmen hobetzea dakar, informazioa biltegiratzeari eta prozesatzeko abiadurari dagokienez, ordenagailu klasikoekin alderatuta.

Ordenagailu kuantikoak merkaturatzeko, hainbat qubit-mota proposatu dira, lotura supereroaleak, ioi-tranpak, puntu kuantikoak eta fase-egoera kuantikoak erabiliz. Informazio kuantikoaren zientziaren historia labur samarra dela eta, qubit-sistema optimo bat diseinatzeko erronka egiteke dago oraindik. Hainbat hamarkadatan, zientziaren ahaleginak eskala atomikoan arkitektura kuantiko-koherente bat eraikitzera bideratu dira, non atomoen funtsezko propietateak, elektroien espina kasu, bidea irekitzen den. Horrelako lorpenak zientzia kuantikoa eta nanoteknologia irauli litzake.

Izan ere, oraindik ere funtsezko ikerketa zientifikoa behar da plataforma kuantiko berri bat abian jartzeko, dauden qubiten akatsak konpontzeko eta, aldi berean, haien integrazioa eta fidagarritasuna handitzeko.

Tunel efektuko ekortze-mikroskopia (STM) oso baliagarria izan da atomo indibidualen egoera elektronikoak neurtzeko eta kontrolatzeko, mekanika kuantikoaren fenomenoak aprobetxatuz. STM teknologia eta ESR (espin elektronikoaren erresonantzia) konbinatzen dituen lan honetan, azaleko titaniozko atomo indibidualen gainean mikrouhin-pultsuen proiekzioak espin egoerak arrakastaz kontrolatzea eta neurtzea ahalbidetzen du. Ondorioz, atomo bakarreko espina zehatz kontrolatu eta nahi zen egoera kuantikora egokitu ahal izan zen. Gainerako erronka qubit anitzeko sistema bat ezartzea zen, hainbat qubits aldi berean kontrolatzeko gai izango zena. Lan honetan aurkeztutako qubit-plataforma titaniozko atomo ugari dira, isolatzaile fin baten (magnesio oxidoa) gainazalean jarriak, eta arrakastaz gainditu du erronka.

Ikertzaileek tuneleko ekortze-mikroskopio (STM) baten zunda erabili zuten, atomo bakoitzaren posizioak zehaztasunez manipulatuz, titaniozko atomo anitzeko egitura bat sortuz, non euren espinek elkarri eragin diezaioketen [ikus 2. irudia]. Ondoren, urruneko kontrol metodo bat aplikatu zioten sentsore gisa balio duen titanio atomoari (qubit sentsorea), eta zunda bakar batekin urrutitik jarritako qubits (urruneko qubits) anitzak kontrolatu eta arrakastaz neurtu zituzten.